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SOLUTION OF REGULAR BEAM EQUATIONS IN ARBITRARY EMISSION CON-

DITIONS ON A CURVILINEAR SURFACE
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The regular beam equations are solved analytically for the case of
emission from an arbitrary surface in conditions of total space charge
{p-mode) and in a given external magnetic field H = (§2); fortem-
perature -limited emission (T-mode), in an external magnetic field

H (8§3); and for emission with nonzero initial velocity (§4). The emitter
is taken as the coordinate surface x' = 0 in an orthogonal system x* (i =
= 1,2,3), while the current density J and field & on it are given func-
tions I (x*, x%, & (x* ,x%. The solution is written as series in (x')®
with coefficients dependent on x*, x°, determined from recurrence
relations. For emission in the p-mode and H # 0, o= 1/8,; for tem-
perature-limited emission, o = 1/2; with nonzero initial velocity,

o = 1. The results are extended to the case of a beam in the presence
of a moving background of uniform density (5).

31, Fundamental equationa. A regular single-energy
nonrelativistic beam of charged particles having fixed
specific charge 7 of fixed sign, is described in the
stationary case by a system of differential equations
which can be written in the tensor form

v,
g*vwy + (u)? = 29, H = A g _1;‘1 ,

g axr

a—z; Vg8 ovi) = 0, —}1,;5‘} (Vee™ 5"%) =p, (L1)
where xl (i = 1, 2, 3) is a curvilinear coordinate system,
vi are the covariant velocity components, ¢ scalar
potential, p is the space charge density, and H! are-
the contravariant components of the external magnetic
field vector. The equations are written in the dimen-
sionless variables r°, V°, ¢°, p°, H® (r, V,H are the
moduli of the radius vector, velocity vector and ex-
ternal magnetic field vector)

r=ar’, V=UV°

o,
¢=—9

after omitting the superscript indicating the dimension-
iess variable; a, U are constants with the dimensions
of length and velocity respectively, and c¢ is the veloc-
ity of light. In the first of Egs. (1.1), u is the constant
initial velocity of the particles on the surface ¢ = 0.

It will be assumed that x! = 0 is the equation of the
emitter in the orthogonal coordinate systemxl (i =1, 2,
3). :
The magnetic field is assumed given, In the prob-
lems considered below, a knowledge of two compo-
nents H?, H? is sufficient, since H! can be found from
Maxwell's equations. Only one further equation,

oH, .
ikl é’z_k =0,
need be added to (1.1) in order to complete the system,
since the fact that H is solenocidal follows from the

(1.3)

conditions for the flow to be regular (the second of
Egs. (1.1), which says that the generalized momentum
P{ = vi + A, A is the vector potential).
Explicity, the conditions in question are
o o —Vim,
s _yrm, L% ygm.

art o azt 9!

From the last two equations,

”FS(%_ Vim)is,  n= S(g_:,LJr Vi ) st

substituting these values in the first,
[ —_
(oo (Vi) a1 =o,

whence

o (Ve =o.
as required, Thus the flow cannot be regular in a region with mag-
netic charges,

. Since the solutions of the problems mentioned are
to be expressed as series in (x‘)a, the metric tensor
elements gj and vgH?, vgH® will be written in the same
form,

, 0 0
gu= @), gn= 2 b @) g = Y ex (=)}
(=0

=0 k=0
Ve = SHe (@, Vel = Skt (1.4)
k=0 k=0
The indices k under the summation signs have the
usual (not tensor) meaning of numbering the terms in
the series and indicating powers. For convenience,
the following notation is also introduced for the coef-
ficients of the expansions of the elements g, vg and
their combinations vg gik:

11 b nk 22 . v 1k
g = N Ax(z)’, g*= 3 Br(z'),

k=0 =(}

= 0@, Vi= 3 G,

k=0 k=¢

Ve = 3B (ed),

k=0

_ =]
Ve = 3o @,
k=0

Vg = ,2,,7" (=Y*. 1.5)

§2. Emission in the p~Mode with H = 0 is defined
by the following conditions on the emitter: when x! = 0,

pvn = J (2%, 2%,
Hes = n{z? 2%,

V=0 9=0, 8p/oz =0,
Hx' = 0; H:\" =m (zz, 13),
m? -+ n? = A2,

(2.1)

where Vxl R !-IXi are the physical components of velocity
and magnetic field. The solution of problem (1.1) and
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(2.1) will be sought as

oo , oo
vy == 2 Uh‘ (xl)l'sk’ Uy = zt Z Vk (xl)‘/’ku
k=3 k=0

2‘P=k2 9, @)™ 2Vgp= 8’ 0, (@) (2.2)

The conditions that the flow be regular lead to

3 ’
v= 573 Uk

<

(3¢, k>2),

3

sz__F‘(Uk)Ii
v : ’

8 = —_J‘_— [(an)z “hq]

. (g=0,1,...), (2'3)
Wy = Py HUsgs' + H,)
FY/d v
Vi=Wi=0, (U'=5z, Uds=75z"

Substitution for vj in the first of Egs. (1.1) gives

Q= 3 [(Ukz + zkilUank-l) Ay, (s-ar) +

k=2 =2

+ (2 iU W zk-m) Ay, (a—zk-l)] +
e :

+ 3 ‘[(sz +2 kithVzk-t) By, (s-ak—s) +
=

k=0

k
(2 N Vlek—l+1) By, g0y +

=0

k-1
-+ (I/sz 42 Z W, Wzk—l) C; (s-at-8) -+

=0
k
+ (2 2 WzWak-m) Cy, (c—nk—v)] . (2.4)
=0

(s=4,5,...).

The summation over k is controlled via the frac~
tional subscript in A, B and C. For instance, with
s = 7 the first group of terms in (2.4) gives a term with
k = 2, the second with k = 3, the fourth and sixth with
k = 0, and the third and fifth play no part at all; the
coefficients with indices that are absent from (1.4),
(1.5), and (2.2)are zeroby definition (e.g., all the coef-
ficients with negative indices in (1.4) and (1.5)). It is
also assumed conventionally that summation over k
from a to b with b < a gives zero.

Using the Poisson equation we get

Pr-s = 5 E (s 4+ 4) Porattsy, (t-s-1) +

§=0

-3
+ 2 {[(s)2Brsy ¢msm]” + [(@a)a"Ty, tms-)]5"} (2.5)

=4 (t=1,2,...).

Finally, the equation for conservation of current
provides relationships for determining the functions

Uk (x?, x°):

[ NA]

D

cof =

=0 =0 1=0

+ o DOy (=120 (26)

[

P2 3Nl porcgia + E L [pra N BV p—l—3!-4) +
=9 H]
1=
/ J

Formulas (2.2)—~(2.6) embody the solution of the
problem. Taking (2.6) withp =1, we get U3 = g5 = p_; =
=0, Writing (2.6) with p =2, 3, 4, and 5 and recall-

ing that the emission current density is given, the
following terms of the potential expansion are obtained:

Pu = (_QZ JY/J%"". P =0, @ =5 h o,

q”:@fj) <i “1/’+15T)

19 9 h4 2 nlp—mly"
q’ﬂ—ﬁ(ij) [1001"’7' 7

— (nky — mbg) + (np’ — mo')] a*,
Qo=

1 27 i 1 , 1
=[zo a:/z B+ g BT + 55 (kan® + %om?) + 5 (A%)s ]ao h,

where the subscripts S, P, Q denote differentiation
with respect to arc along the curvilinear axes x!, x?,
x5, Yy and ng are the principal curvatures of the sur-
facex! =0, T = %y + %y is its total curvature; k; and
kj, 6; and 6, are the principal curvatures of the sur-
faces x% = const, x3 = const respectively, evaluated
at x! = 0. :

If the arc length S along the x! curvilinear axis or-
thogonal to the emitter is taken as the expansion pa-
rameter, the expression for the potential becomes

29— ($)"s" 4 S s 4 B(S0Y Tt

1/9 9 A 2 nJP—mJQ
+T4(?J> [100] ty

— (nky — mdz) 4 (np’ — mq’)] s -+
+ [700 hT 4 8(xln2 + %gm?) + 5 (h2) ]

The first correction to the Child-Langmuir three-
halves power law in the local form depends only on
the absolute value of the magnetic field strength at the
emitter. The next term is the same as the first cor-
rection to the three-halves power law in the electro-
static case. The fourth term represents subtler effects,
due not ohly to the magnetic field, but also to inhomo-
geneities in the field and in the emission current den-
sity, and to geometric factors. Finally, the coeffi-
cient of 83 takes account of the magnetic field interac—
tion with the emitter geometry and the rate of change
of h? in the direction of the normal to x! =0, '

§3. Emission in the T-mode in a given external
magnetic field H is determined by the following condi-
tions: with x! = 0,

V=0 =0 Vg op/ox =e(z* 29,



pra = J (22, 2%, Ha=0,

Hye = n(2? 2%,

Hy = m (2%, 2%, (3.1)
m? 4 n? = h*:

Expansions for vi, ¢, p satisfying (1.1) and (3.1)
will be obtained in half-integer powers of x!

o0 o 1
= DUk @)™, va=at 3V, ()",
k=1 k=0
1N 1Yk
vy =T EW g (ZH)*,
k=0

9= Yo, @)  2Vee=Y p, (V" (3.2
k=2 il

The conditions for the generalized momentum to be
potential lead to the following relations between Vy,
Wk and Uk, Hk’ hk:

qu = T (Uzq)" - h V2r1+1 y; +3/ (U2q+1)
1 .
Vom—hy W=y (U +H,  (3:3)
1 , '
W = qa+ % (Usge)s's  Wo=H, (7=0,1,...).

The energy integral is used to find the coefficients
of the potential expansion,

= 3 [<Uk2 + 2 kil UIU2k—1> Aspsre +
{=1 —~

k=1
K
-+ <2 2 Ulek—l+1> A‘/z (S—l)-kJ +
=1
k—1
+ % [(sz +2% Vszk—l> By, (s—aymk -+
k=0 =0
®
+ (2 2 VIVZTC—1+1> By, (s-5)-x +
i=o

-1
+ (Wk2 +23W, Wzk—l) Cy, (s +

=0

+ (2 é Wszk—l+1> Cy, (5—5)—k]

=0

(822,3,..-)- (3.4:)

Poisson's equation gives for pi_,
P = 2 {1/ a8t Qs0ts, (1-sy41 -+

s=2

A [(@s)2 By, t=s)-1la” + [{@s)a" 1y, (t-s).—llsl} (t=1,2,..).(3.5)

Finally, recurrence relations are obtained for Uy
from the equation for conservation of current,

EII/zP D2 ZU Ay, (p~t-t)41 [03—2 SViBy, p—t—l)—l] +
t——l =0
3.6)
Pz—z EWICI/, (p—!-[)—l:! }“ 0 (p=1,2,.. ). (
{==0
Formulas (3.2)—(3.6) provide the solution of the
problem.
The first coefficients in the potential expansion are

P2 = 2ea,"s, fPs—[lTvzlf—aO/»
(P4=<‘1— 3/28+T 1:;)%:
@ = V2 Ls_(,_ 7 _;_15 T4 ; ;I: +115J:2>a05/4,
o (e ) e e

33

{ oy 4 o, 8J3
tgelitgels —gm—

— B+ g J (mbs—nks) + ()’ — (mI)a” +
+ sl (—nep’ + nsz')] +
+ 5 (ks k) 00+ (301 + 8y) g — 2ok, + 8,2) —
— & (ki ko + 6100) —ep” — Q" + & (k1p” + 8;0")]-
The expansion in s = al/zx can be transformed into

an expansion in the arc length S along the x! axis by
means of

1
s=8—+ a“/z St 5 < %{%)S”"
7 a 13 @14, 1
+(— % ‘./+ St B
This gives
2(p=2eS—{—
4V2 T Vz J
+ 412 == V_S ( > 2y V2 VJ113T+
+§e—2+h2)s‘*/z+{ BT+ Ler: g Lels —
8 Ja 4 Jih2 17 '
—&s  Be T QEV(’”‘S‘“‘”‘"’“Q) (n/)p" —

— (m)g" + ;(— nep’ 4 mﬁo')l +
4 [(3h+ Eo) ep” + (30 + 85) eq” — 2e(kei+ 8,%) —
— e(kaky + duds) — 85" — £q” + & (ke + 1)1} *+ - . (3.8)

Comparing (2.7) with (3.8), it can be seen that when
¢ # 0 the action of the magnetic field is hampered,
while geometric effects predominate: h? appears in the
coefficient of 85/2, and T in that of S% the magnetic
field gradients only appear in the last term of (3.8),
which also takes account of the variation in the total
curvature along the normal to the emitter [in (2.7)
the latter only affects the coefficient of S1/3], ete.

§4, The case of nonzero initial velocity implies
t}}e following conditions on the emitting surface: with
x =0,

Vp=u=const, ¢ =70, ]/g‘—f 0 | 0z = & (22, 2%),

Hou=0, Hgp=m(? 2%,
m? -+ n® = A, 4.1)

v = J (22, 2%),

Hye = n(z?, 2%),

The solution of problem (1.1) and (4.1) will be
sought as

n= NUEY, o= NV,
k=0 k=0

vy = ! i Wi (zh)k,
=0

2 + ( zq) (@), 2V§p=§’]pk(xl)“‘. 4.2)
==()

The dependences of Vi, Wi on Uy and the coeffi-
cients of the magnetic field component expansions are
given by

(k+ Ve =
(k+ 1) W= (Uns

(U)e' — ha,
ChH, (=04,.0,  (4.3)

where u = A(}/ZUO. Using the energy integral, we get
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Al
(

k
2 2 Ul-lek—Hl) Ag o + 2 2 Uzk—(q) As—zh—l -+
+ ( Vit 2 2 Vc-lek-m) B, gka+

(2 2 Vszk—m) Bs-eh—s +

1=0

+ ( Wit 42 Z W W, k—l+1> Csrka+

1=1

+ (2 Z WIW2k~1+1) CS—ZK—R} (s=0,1,...). (4.4)
i=o

Poisson's equation gives for Pi-1

t4+1

Py =1 ZscPsal—su + 2 {[ (Ps Bt—s 1]" -+ [((Ps)s Tl—s—lls }
s=1 =1

t=1,2...). (4.5)

The recurrence relations for the expansion coef-
ficients are

P bt R P2
pY o 3 Alip + 2 [(
i=o0 =0

=0

TS BV i)+
=0

( p_i,'— Cle—-t—l—2> ’] =0
(p=t, 2,...). 4.6)

To assess the effect of the magnetic field, we write
down the first four terms of the potential expansion

o 1/, . 1 a1
P = 28ay":, @y = (5— % + +£T) g
1 & 7 1a 1 a
gPS”.lLE aoa"5<“+8T)_ﬁao da28+

1 eJ 3 P
+ §<__3+2 T 4el? +sTs>—§s(k12+61’)—

— o ks +8,8) + (ks + 5 k) ee’ +

. ! 1 ” ’ 3
7—{51—,— -3-5>8Q —*——(6P + &g )‘f“;‘s(kw +‘510')]ao/’,
1 e 1 1 ’
e B 4 L
. 3 »
+ 2~ Lokt ay —-;-a(klk2+él«52)+
1

- (kl + 5k )BP + (61 52) e — ‘;;(EP” +e") +

et = 3 ()¢ s

1a1a2 1 a3 1 s2J 1 Jh? 1¢eJ
ERA R S —ma TR tns ST+

+§;T2+ﬁeT3+ TITS + pel T 4 Sels +
1)u2 (s k) + 5 Tl~—s(k12+612)—

— S e (eaky + 8,85) + [y + —kz)sp + (8 + 580"~
— gler’ +ea) + 5 ek +8,0)] —

14 6 = = o o+ S —

[%(420 —&s') +7 ( "1—”2) (51 + %52)]80'—

— 5 &k [r‘k1s' — (“1 + —:1_;“2)?' + % (’ﬁ -+ '}7. kz)] —
1
)

?‘51[615'-— (17 %+ %)Q' + %2 (51 + =

ro| = (S

~ b e+ 3

2y — ug} eg" +
o[ (s’ — To)e' + wuhie’ — 5y (hus — T5') |+
[ 5 (0’ —T e’ + umlo'— 30 —To)| —
<J , ’:I)P, Mu (jQ + ’"J) +
+§ Pkt gh) + gl (5 )=
— it +8) + f (ks + 8:85) —
— Flar +60)]} e

-
+

Using (3.7), we arrive at the expression
2qJ=-—u2+2eS+(~i-—+ sT)S2+
1
+ 3['—
—2e (k.2 + 8.%) — & (hyhy -+ 8,0,) +
+ (3% - ka) €p" 1 (30, + 8y) Q" — " — 80" -+
+ e (ke + 010") | 7+ BuSt ... @.7)

Here, ¢, is the part of ¢, not containing a;, a,, a;.
A nonzero initial velocity of emission leads to the
same sort of trend as a nonzero electric field, i.e.,
geometric factors predominate over the magnetic field.
For, with € = 0, up to terms corresponding to uniform
flow between parallel planes (T = 0), the third term
in the expansion is 2/3 u'lJT, and the magnetic field
only appears first in the coefficient of S4 The con-
tribution of H to ¢, is the result, not only of the ab-
solute value of the magnetic field at the emitter, but
also of its derivatives in the directions P, Q. When
g # 0 the geometric effects will be even more marked,
since the total curvature now first appears in ¢.

The problems discussed above, together with those
dealt with in [1], cover the whole range of problems
that can be devised for a single-energy beam when all
the necessary conditions are specified on the emitting
surface.

§5. Beam in the presence of a moving background, The resuits of
§§2~4 are easily extended to the case of flow against a moving back-
ground of uniform density Ng, where Ng > 0 if the background is made
up of particles with the same charge sign as the beam particles, and
Ny < 0 in the opposite case. The solution is given by the formulas
of $§2-4, except that the functions ptin(2.6), (3.6) and (4.6) have to
be replaced by functions Ry given by the formulas below.

Denoting by & the coefficients of the potential expansion in the
presence of the background, and by 4y the corrections to the functions
@k obtained above, corresponding to the case Ny = 0, Ay = ¢k — ¢k»
the formulas for the corrections are as follows.

Wwith emission in the p-mode,

%+2%7‘+8T2+8T5'——

Ry == p3q — 2NGy (¢ =10,1,...),

Ry P: ¢ =+ 3'])7 Ay=As=A; =0,
=3 9 {4\
, Ag = — Tl <h2
Ag G Noag 9= 355 ( > ;

9 99
A"—N"("O teT

17 ¢
—N\ s
1 o/'lo +
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Denoting by 9, the coefficients of the potential expansion in the A= { 1 a ( LI N g te LR
variable S in the case Ny = 0, we have STNE o TR T 4wt 12
1 e 1 1 1 . m
, ; — TP 2P | - Y (6 — .
2W=Q?4S‘/’+('ﬁo-f—i%/vo)y*ﬁvs/’%“ 3w [ 275 12[ ( T u>p (61 u )0
r 9 (4\'"s -y 17 AT % : 2y b [y = D) - (26 1 8,) (6, — T 2
+[°"+2TO(F) J /w.,(hz—nzvo)Js s + (2~ .)( 1- u) - (26, 4 62),(61 7)]}Avoa,,~,
8+ 2 NoT) 58 - 2‘P=‘P15—‘-‘P252*[ﬁa+—1-(.£.— ) No |2+
+ .+35._00) ' 3 \ut ;
It is clear from this that the background produces the same type +{04 + (Ti; _J? —_ _41.._5,2‘_ - %ﬁ; — % _E? . _:S_T;__ 1 Ty +
of effect as a nonzero magnetic field: when § =0, but N¢ = 0, the v ¢ “ , , 12
expansion is in powers of S5, + :—z[-— (h + %) —_ (6:— L:—) +
For emissiont in the T-mode, i :
2y + ky) (ke = ) 4 (26 -L’L]‘N4
Ry op—2MeGy Ry =pay (4 =0,4,. + 2+ ) (ks =)+ 1+52)(5x u)} oSé -+

2ve g s
By=A3=0, As=Nyap>s A5=—‘4_]5/’ﬁ—'—€-/vnaof‘, REFERENCES

Ap= (%.a_""l_' + %0!5. + %T} Noag®, 1. Yu. E. Kuznetsov and V. A. Syrovoi, "Solu-
0 2V3 7 tion of the regular electrostatic beam equations for
20 = @5 -+ Q8™ + (B34 Ng) §2 4 (Gn B Ve No) s 4 emission from an arbitrary surface," PMTF [Journal
70 J? 1 of Applied Mechanics and Technical Physics], no. 2,
+[m+(_§..£;+gr)zvo]sa+.... 1966,
For nonzero initial velocity,
Ry = py — 2N,G; (t=0,1,...),

1 e 3,
A=4,=0, Ay=-3 <E=' - T) Noa™, 30 November 1965 Moscow



